3.319 \(\int \frac{(a+b x^n)^p}{(c+d x^n)^3} \, dx\)

Optimal. Leaf size=59 \[ \frac{x \left (a+b x^n\right )^p \left (\frac{b x^n}{a}+1\right )^{-p} F_1\left (\frac{1}{n};-p,3;1+\frac{1}{n};-\frac{b x^n}{a},-\frac{d x^n}{c}\right )}{c^3} \]

[Out]

(x*(a + b*x^n)^p*AppellF1[n^(-1), -p, 3, 1 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)])/(c^3*(1 + (b*x^n)/a)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.0287971, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {430, 429} \[ \frac{x \left (a+b x^n\right )^p \left (\frac{b x^n}{a}+1\right )^{-p} F_1\left (\frac{1}{n};-p,3;1+\frac{1}{n};-\frac{b x^n}{a},-\frac{d x^n}{c}\right )}{c^3} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^n)^p/(c + d*x^n)^3,x]

[Out]

(x*(a + b*x^n)^p*AppellF1[n^(-1), -p, 3, 1 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)])/(c^3*(1 + (b*x^n)/a)^p)

Rule 430

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^F
racPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{\left (a+b x^n\right )^p}{\left (c+d x^n\right )^3} \, dx &=\left (\left (a+b x^n\right )^p \left (1+\frac{b x^n}{a}\right )^{-p}\right ) \int \frac{\left (1+\frac{b x^n}{a}\right )^p}{\left (c+d x^n\right )^3} \, dx\\ &=\frac{x \left (a+b x^n\right )^p \left (1+\frac{b x^n}{a}\right )^{-p} F_1\left (\frac{1}{n};-p,3;1+\frac{1}{n};-\frac{b x^n}{a},-\frac{d x^n}{c}\right )}{c^3}\\ \end{align*}

Mathematica [B]  time = 0.405605, size = 180, normalized size = 3.05 \[ \frac{a c (n+1) x \left (a+b x^n\right )^p F_1\left (\frac{1}{n};-p,3;1+\frac{1}{n};-\frac{b x^n}{a},-\frac{d x^n}{c}\right )}{\left (c+d x^n\right )^3 \left (b c n p x^n F_1\left (1+\frac{1}{n};1-p,3;2+\frac{1}{n};-\frac{b x^n}{a},-\frac{d x^n}{c}\right )-3 a d n x^n F_1\left (1+\frac{1}{n};-p,4;2+\frac{1}{n};-\frac{b x^n}{a},-\frac{d x^n}{c}\right )+a c (n+1) F_1\left (\frac{1}{n};-p,3;1+\frac{1}{n};-\frac{b x^n}{a},-\frac{d x^n}{c}\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^n)^p/(c + d*x^n)^3,x]

[Out]

(a*c*(1 + n)*x*(a + b*x^n)^p*AppellF1[n^(-1), -p, 3, 1 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)])/((c + d*x^n)^3*(
b*c*n*p*x^n*AppellF1[1 + n^(-1), 1 - p, 3, 2 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)] - 3*a*d*n*x^n*AppellF1[1 +
n^(-1), -p, 4, 2 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)] + a*c*(1 + n)*AppellF1[n^(-1), -p, 3, 1 + n^(-1), -((b*
x^n)/a), -((d*x^n)/c)]))

________________________________________________________________________________________

Maple [F]  time = 0.708, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( a+b{x}^{n} \right ) ^{p}}{ \left ( c+d{x}^{n} \right ) ^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*x^n)^p/(c+d*x^n)^3,x)

[Out]

int((a+b*x^n)^p/(c+d*x^n)^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{n} + a\right )}^{p}}{{\left (d x^{n} + c\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n)^p/(c+d*x^n)^3,x, algorithm="maxima")

[Out]

integrate((b*x^n + a)^p/(d*x^n + c)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{n} + a\right )}^{p}}{d^{3} x^{3 \, n} + 3 \, c d^{2} x^{2 \, n} + 3 \, c^{2} d x^{n} + c^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n)^p/(c+d*x^n)^3,x, algorithm="fricas")

[Out]

integral((b*x^n + a)^p/(d^3*x^(3*n) + 3*c*d^2*x^(2*n) + 3*c^2*d*x^n + c^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{n}\right )^{p}}{\left (c + d x^{n}\right )^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x**n)**p/(c+d*x**n)**3,x)

[Out]

Integral((a + b*x**n)**p/(c + d*x**n)**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{n} + a\right )}^{p}}{{\left (d x^{n} + c\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n)^p/(c+d*x^n)^3,x, algorithm="giac")

[Out]

integrate((b*x^n + a)^p/(d*x^n + c)^3, x)